Abstract

Objective: Examine the endothelial function of conduit arteries above and below the level of spinal cord lesion using a method independent of arterial dimensions. Endothelial dysfunction is considered a highly sensitive marker of cardiovascular disease progression. Reports on endothelial function (using flow mediated dilation) after spinal cord injury (SCI) has been contentious, due to a lack of appropriate adjustment for differences in resting arterial dimensions as well as shear rate between SCI and able bodied controls. Moreover, exercise has been linked with improved vascular function through increases in blood flow and shear stress. This study also aims to assess the effect of passive exercise on the endothelial function of conduit arteries of SCI animals.

Design: Experimental cross sectional study.
Participants/methods: We examined endothelial function in Wistar rats with complete T3 spinal cord transection (SCI), T3 transection and passive exercise (PE), and uninjured controls. In vitro wire myography was used to examine endothelial mediated vasodilation (acetylcholine, ACh) in the BA and FA of each rat.

Results: Femoral arteries from SCI animals exhibited impaired reactivity to ACh (i.e., requiring 5x greater ACh to reach 50% of maximal dilation; p<.01) compared to those of the controls. Passive exercise after SCI improved the sensitivity of FA (p<.01) to be similar to that of uninjured animals. However, brachial arteries from all groups showed similar responses to ACh (p=0.789).

Conclusion: We have shown, for the first time, the expected endothelial dysfunction in the inactive/supraspinally disconnected femoral artery after SCI. Furthermore, passive exercise of the hind legs was effective in preventing endothelial dysfunction. Together, this study provides mechanistic insight into cardiovascular disease progression after SCI, as well as a potential therapeutic intervention.

Support: Study supported by CIHR (TCA 118348); MMZZ is funded by CIHR CGS Master's.

Contact Name : Mei Mu Zi Zheng
Contact Email: meimuzi.zheng@hotmail.com

Objective 1. Describe the endothelial function of conduit arteries above and below the level of spinal cord lesion.

Presenters Listed
Mei Mu Zi Zheng, B.Sc.1,2; Aaron A. Phillips, Ph.D.1,2; Saeid Golbidi, M.D., Ph.D2.; Ismail Laher, Ph.D.2; Andrei V. Krassioukov, M.D., Ph.D, FRCPC.1,2,3

1 International Collaboration on Repair Discoveries; 2 University of British Columbia

Participants
Mei Mu Zi Zheng, MSc Candidate

Bio

Education:
2014/7 2016/6
Master of Science, Experimental Medicine, University of British Columbia Degree Status: In Progress
Supervisors: Dr. Andrei Krassioukov 2010/9 2014/5
Bachelor of Science, Microbiology and Immunology, University of British Columbia

Awards:
2015/5 2016/5 Recipient of Canada Graduate Scholarships Master’s (CGS M)
Canadian Institutes of Health Research

Publications:
Neurovascular Coupling in Humans: Physiology, Methodological Advances and Clinical
Prazosin: a potential new
management tool for iatrogenic autonomic dysreflexia in individuals with spinal cord injury?
Neural Regeneration Research. 10(4): 557 558.
Selective alpha adrenergic
antagonist reduces severity of transient hypertension during sexual stimulation after spinal cord
injury. Journal of
Neurotrauma. 32(6): 392 396.
Aaron A. Phillips, Andrei V. Krassioukov, Mei Mu Zi Zheng, and Darren E. R. Warburton.

Education
University of British Columbia, Vancouver, BC, Canada
Bachelor of Science, May 2014; Microbiology and Immunology

Financial Disclosure: Mei Mu Zi Zheng has no relevant financial relationships to disclose.
NonFinancial Disclosure: Mei Mu Zi Zheng has no relevant nonfinancial relationships to disclose.